LES PUISSANCES

I. Puissances entières d'un nombre relatif : exposant entier positif

Définition:

Soit *a* un nombre relatif et n un entier positif non nul.

On note a^n , le nombre $\underbrace{a \times a \times ... \times a}_{n}$, c'est-à-dire le produit de n facteurs égaux à a:

$$a^n = \underbrace{a \times a \times ... \times a}_{n}$$

<u>Exemples</u>: $4^5 = 4 \times 4 \times 4 \times 4 \times 4 = 1024$

$$(-7)^3 = (-7) \times (-7) \times (-7) = -343$$

$$\left(\frac{2}{3}\right)^4 = \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} \times \frac{2}{3} = \frac{16}{81}$$

Par convention, si $\underline{a \neq 0}$: $a^0 = 1$.

$$\rightarrow (-8)^0 = 1$$

Attention!

- Il ne faut pas confondre 5^3 et 5×3 ! $\rightarrow 5^3 = 5 \times 5 \times 5 = 125$ et $5 \times 3 = 15$
- Il ne faut pas confondre 3^4 et 4^3 ! $\rightarrow 3^4 = 3 \times 3 \times 3 \times 3 = 81$ et $4^3 = 4 \times 4 \times 4 = 64$
- Il ne faut pas confondre $(-3)^4$ et -3^4 !

→
$$(-3)^4 = (-3) \times (-3) \times (-3) \times (-3) = 81$$
 et $-3^4 = -(3 \times 3 \times 3 \times 3) = -81$

Remarques :

- (i) Pour tout a, $a^1 = a$
- (ii) Les puissances d'exposants pairs sont toujours positives $(-8)^{42}$ en est un exemple.

II. Puissances entières d'un nombre relatif : exposant entier négatif

Définition:

Soit *a* un nombre relatif <u>non nul</u> et n un entier non nul.

On note a^{-n} l'inverse de a^n , c'est-à-dire que $a^{-n} = \frac{1}{a^n}$.

$$a^{-n} = \frac{1}{a^n} = \underbrace{\frac{1}{a \times a \times \dots \times a}}_{n}$$

 $\underline{Exemples}$: 2^{-3} est l'inverse de 2^3

$$\Rightarrow 2^{-3} = \frac{1}{2^3} = \frac{1}{2 \times 2 \times 2} = \frac{1}{8}$$

$$(-3)^{-2} = \frac{1}{(-3)^2} = \frac{1}{(-3)\times(-3)} = \frac{1}{9}$$

Cas particulier, si $\underline{a \neq 0}$: a^{-1} est l'inverse de a : $a^{-1} = \frac{1}{a}$. $\rightarrow 5^{-1} = \frac{1}{5}$

Règles de calcul

1. Les puissances de nombres relatifs

Quelques exemples de calculs :

Produit	Inverse	Quotient	Puissance de puissance
$4^2 \times 4^3 = 4 \times 4 \times 4 \times 4 \times 4$		$\frac{(-3)^3}{(-3)^5} = \frac{(-3) \times (-3) \times (-3)}{(-3) \times (-3) \times (-3) \times (-3) \times (-3)}$ $= \frac{1}{(-3) \times (-3)}$ $= \frac{1}{(-3)^2}$	$(6^3)^{-2} = \frac{1}{(6^3)^2}$ $= \frac{1}{(6 \times 6 \times 6)^2}$ $= \frac{1}{6 \times 6 \times 6 \times 6 \times 6 \times 6}$
		$=(-3)^{-2}$	$=\frac{1}{6^6}=6^{-6}$

REGLES DE CALCUL:

Produit	Inverse	Quotient	Puissance de puissance
$a^m \times a^n = a^{m+n}$	$\frac{1}{a^n} = a^{-n}$	$\frac{a^m}{a^n} = a^{m-n}$	$\left(a^{m}\right)^{n}=a^{m\times n}$
$4^2 \times 4^3 = 4^5$	$\frac{1}{5^3} = 5^{-3}$	$\frac{\left(-3\right)^3}{\left(-3\right)^5} = \left(-3\right)^{3-5} = \left(-3\right)^{-2}$	$\left(6^3\right)^{-2} = 6^{3\times(-2)} = 6^{-6}$

Attention!

Il ne faut pas confondre $4^2 + 4^3$ avec 4^5 !

$$\rightarrow$$
 4² +4³ =16+64=80 et 4⁵ =4×4×4×4×4=1024

Il ne faut pas confondre $7^4 + 7^4$ avec 14^4 !

2. Règles de priorité

Propriété:

Quand une expression comporte des puissances, on calcule en priorité :

- 1. Les calculs entre parenthèses
- 2. Les puissances
- 3. Les multiplications et les divisions

Pour deux nombres a et b non nuls, on a :

$$(a \times b)^{p} = a^{p} \times b^{p} \qquad \text{et} \qquad \left(\frac{a}{b}\right)^{p} = \frac{a^{p}}{b^{p}}$$

$$\Rightarrow \text{Ainsi}: \qquad (a \times b)^{2} = ab \times ab = a \times a \times b \times b = a^{2} \times b^{2}$$

$$(3x)^{2} = 3x \times 3x$$

$$= 3 \times x \times 3 \times x$$

$$= 3 \times x \times 3 \times x$$

$$= 3 \times 3 \times x \times x$$

$$= 3 \times 3$$